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Abstract
Transfer learning aims to improve the performance
of target learning task by leveraging information (or
transferring knowledge) from other related tasks.
Recently, transfer distance metric learning (TDM-
L) has attracted lots of interests, but most of these
methods assume that feature representations for
the source and target learning tasks are the same.
Hence, they are not suitable for the applications,
in which the data are from heterogeneous domain-
s (feature spaces, modalities and even semantic-
s). Although some existing heterogeneous transfer
learning (HTL) approaches is able to handle such
domains, they lack flexibility in real-world appli-
cations, and the learned transformations are often
restricted to be linear. We therefore develop a gen-
eral and flexible heterogeneous TDML (HTDM-
L) framework based on the knowledge fragmen-
t transfer strategy. In the proposed HTDML, any
(linear or nonlinear) distance metric learning algo-
rithms can be employed to learn the source met-
ric beforehand. Then a set of knowledge fragments
are extracted from the pre-learned source metric to
help target metric learning. In addition, either lin-
ear or nonlinear distance metric can be learned for
the target domain. Extensive experiments on both
scene classification and object recognition demon-
strate superiority of the proposed method.

1 Introduction
We often encounter the label or side information (such as
the similar/dissimilar constraints) deficiency problem in the
machine learning and pattern recognition applications due
to the high labeling cost (labor-intensive and expensive).
Transfer learning [Pan and Yang, 2010; Luo et al., 2014;
Hu et al., 2015; Isele et al., 2016] is able to mitigate this
problem in the target learning task or domain by leveraging
information from other related source tasks or domains [Liu
et al., 2017]. A typical example is the unconstrained human
gait recognition, which is to identify a person’s manner of
walking from a distance in the wild conditions [Tao et al.,
2007b]. We can only label a few gait images (or image se-
quences) in a new scenario but we may have large amounts

of labeled ones in some other scenarios. The data distribu-
tions of two different scenarios can be very different due to
the varying lighting and background. Hence, the recognition
model trained in a label-rich scenario may perform bad in
the label-scarce one, and transfer learning is helpful in this
case. Some other examples include the sentiment classifica-
tion [Pan and Yang, 2010], and image super-resolution [Dai
et al., 2015].

Recently, transfer distance metric learning (TDML) [Lu-
o et al., 2014; Hu et al., 2015] has attracted an increas-
ing attention, because it is crucial to learn a reliable dis-
tance metric [Tao et al., 2007a] to reveal the data relation-
ships in diverse research areas, ranging from clustering and
classification to kernel machines and ranking [Kulis, 2012;
Lim and Lanckriet, 2014]. Traditional TDML algorithms
usually assume the source and target domain share the same
feature representation. This assumption may not be valid in
practice. For example, the document representations of dif-
ferent languages vary in multilingual document categoriza-
tion since the utilized vocabularies are different [Luo et al.,
2016]. Some recent works on image annotation and retrieval
suggest utilizing source features to guide learning a better
representation for target features [Qi et al., 2012; Dai et al.,
2015]. The feature spaces of source and target domains can
be quite different and there is sometimes semantic gap be-
tween them (e.g. text and visual features) [Xu et al., 2014;
2015].

There exist some heterogeneous transfer learning (HTL)
approaches [Wang and Mahadevan, 2011; Zhang and Yeung,
2011; Qi et al., 2012] that are able to manage heterogeneous
representations. These approaches often transform the het-
erogeneous features into a common subspace, so that the d-
ifference between heterogeneous domains is reduced. Most
of the HTL methods are not specially designed for distance
metric learning (DML), but we can derive a metric from the
learned transformation for each domain. Although effective
in some cases, the current HTL approaches exhibit two main
defects: 1) the source and target transformations are learned
together. Consequently, they are not feasible when original
source domain data are not available, and only source met-
ric is provided. Besides, learning both the source and target
transformations may significantly increase the complexity of
the algorithms when the number of samples in the source do-
main is large; 2) the transformations are restricted to be linear
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and thus the performance may be unsatisfactory in many vi-
sual analysis-based applications, since the structure of data
distribution is nonlinear for most types of the visual features.

Inspired by the knowledge fragment transfer strategy [Vap-
nik and Izmailov, 2015], we develop a general heterogeneous
TDML (HTDML) framework to overcome these defects. In
particular, the proposed HTDML first learns the source dis-
tance metric by applying existing linear or nonlinear metric
learning algorithms on the given labeled source data. Then
we extract some knowledge fragments from the learned met-
ric for transfer. In this paper, we assume there are abundant
unlabeled samples that have feature representations in both of
the source and target domains. By simultaneously minimiz-
ing the empirical losses w.r.t. the metric in the target domain,
and enforcing the metric to agree with the knowledge frag-
ments on the unlabeled samples, we learn an improved target
metric by making use of the additional source information
contained in the fragments.

The main advantages of the proposed HTDML are: 1) the
source knowledge fragments can be learned offline, we do
not have to reuse the original source domain data. Hence,
the algorithm can be used in the applications where source
domain data are invisible. Besides, any (linear or nonlinear)
metric learning algorithms can be adopted to learn the source
knowledge fragments. Thus, the method is general, flexible,
and easy-to-use; 2) nonlinear metric can be learned for the
target domain by incorporating some nonlinear learning tech-
nique, such as gradient boosting regression tree (GBRT) [Ke-
dem et al., 2012]. Hence the proposed method can be wide-
ly adopted in many applications, especially the challenging
visual-analytic based ones. We conduct experiments on two
popular applications: scene classification and object recog-
nition. In addition to the Euclidean (EU) and single domain
DML baselines, we further compare with several represen-
tative heterogeneous transfer learning approaches [Wang and
Mahadevan, 2011; Zhang and Yeung, 2011; Qi et al., 2012;
Dai et al., 2015]. The results validate the superiority of the
proposed HTDML.

2 Heterogeneous Transfer Distance Metric
Learning

Problem setting: we suppose the training set with (weakly su-
pervised) side information for the target domain is given by
DLM = {x1

Mi,x
2
Mi, yMi}NM

i=1 , where x1
Mi,x

2
Mi ∈ RdM , and

yMi = ±1 indicates x1
Mi and x2

Mi are similar/dissimilar to
each other. In the target domain, we have only a few sam-
ples with side information, and thus DML may perform poor-
ly. Therefore, we assume there exists a relevant source do-
main with the training set DLS = {x1

Si,x
2
Si, ySi}

NS
i=1, where

x1
Si,x

2
Si ∈ RdS belong to different feature space from the

target domain samples. In the source domain, either the fea-
tures are stronger than the target domain [Dai et al., 2015],
or the samples (with side information) are abundant, i.e.,
NS � NM . To enable knowledge transfer, we also as-
sume there are large amounts of unlabeled data that have
representations in both the source and target domains, i.e.,
DU = {(xUSn,xUMn)}NU

n=1, and such data are usually easy to

collect in practice [Qi et al., 2012]. Our goal is to learn an
appropriate distance metric AM for the target domain.

2.1 Problem Formulation
We propose a general framework for learning distance metric
AM in the target domain by making use of the information
from both target and source domain, as well as the unlabeled
data. The framework is motivated by the privileged infor-
mation transfer strategy presented in [Vapnik and Izmailov,
2015], where the knowledge in a privileged space X̃ is repre-
sented as a set of functions κ̃(p̃c, x̃), c = 1, 2, . . . , r. Here,
p̃c is called fundamental element, which is a vector from the
space X̃ , and κ̃(p̃c, x̃) is called fragment of knowledge with
the kernel function κ̃. If we choose the quadratic kernel func-
tion, i.e., κ̃(x̃i, x̃j) = 〈x̃i, x̃j〉2, the fundamental elements
can be found exactly by solving an eigenvalue problem [Vap-
nik and Izmailov, 2015]. To transfer knowledge from the priv-
ileged space to the original decision space X , some functions
{φc(x)}rc=1 are found in space X to approximate the knowl-
edge fragments {κ̃(p̃c, x̃)}rc=1. Here, x and x̃ are the rep-
resentations of a given sample in the original decision space
and privileged space respectively.

In [Vapnik and Izmailov, 2015], both the finding of funda-
mental elements and knowledge transfer are under the theme
of support vector machines (SVM), where sufficient data with
class labels and corresponding privilege information are pro-
vided for training. Our setting is much more challenging in
that: 1) we only have weakly supervised side information for
limited data; 2) the weakly labeled data in the target domain
are scarce and are usually different from the source domain.
Consequently, the method presented in [Vapnik and Izmailov,
2015] is not appropriate for DML, and cannot be used in the
heterogeneous transfer setting. To tackle this problem, we
propose the following heterogeneous transfer distance metric
learning (HTDML) framework.

The framework is based on a generalized notion of the Ma-
halanobis distance [Kulis, 2012]. In the literature of distance
metric learning (DML), most methods focus on learn the Ma-
halanobis distance, which is often denoted as

dstA(x1
i ,x

2
i ) = (x1

i − x2
i )
TA(x1

i − x2
i ), (1)

Here, A is the metric, which is a positive semi-definite ma-
trix and can be factorized as A = UUT . By applying some
simple algebraic manipulations, we have dstA(x1

i ,x
2
i ) =

‖Ux1
i − Ux2

i ‖22. In order to take the structure of data dis-
tribution into consideration, we propose to conduct DM-
L in the feature space determined by a mapping ψ, i.e.,
dstA(x1

i ,x
2
i ) = ‖Uψ(x1

i ) − Uψ(x2
i )‖22. Then the distance

can be further denoted as

dstφ(x1
i ,x

2
i ) = ‖φ(x1

i )− φ(x2
i )‖22, (2)

Here, φ(·) = Uψ(·) is an integrated mapping function, which
is unspecified and can be either linear or nonlinear. Then the
learning of the target metric AM is reformulated as learning
the mapping φM , and the general formulation of the proposed
HTDML for learning φM is given by

arg min
φM

ε(φM ) =E(φM ) + γR({φMc(·)}, {fSc(·)}), (3)
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where E(φM ) = 1
NM

∑
i L(φM ;x1

Mi,x
2
Mi, yMi) is the em-

pirical loss w.r.t. φM in the target domain. We choose
L(φM ;x1

Mi,x
2
Mi, yMi) = g(yMi[1 − dstφM

(x1
Mi,x

2
Mi)])

and adopt the hinge loss for g, i.e., g(z) = max(0, b − z).
Here, b is set to be zero, and the distance between any
pair of samples is given by (2). The regularization term
R({φMc(·)}, {fSc(·)}) is to enforce knowledge transfer from
the source domains to the target domain, where φMc is the
c’th coordinate of the vector-valued mapping function φM
and fSc(·) is the c’th fragment of knowledge in source do-
main. The knowledge transfer is performed by using the map-
ping functions {φMc(·)} in the target domain to approximate
the fragments of knowledge in the source domains {fSc(·)}.
In this way, the knowledge in the source domain is incorporat-
ed to learn the mapping function φM , i.e., the distance metric
in the target domain. The trade-off hyper-parameter γ ≥ 0.

The knowledge fragments in the source domain can be
found in various ways. If classification labels are available,
we can train SVM classifiers and use the obtained support
vectors as the fundamental elements, and then construct the
knowledge fragments using a pre-defined kernel. However,
in DML, we are often only provided with side (weakly super-
vised) information, i.e., the similarity/dissimilarity between
two samples xi and xj . Therefore, we first learn the met-
ric for source domain using some existing DML algorithm.
The output of a metric learning algorithm can be a distance
metric AS [Davis et al., 2007] or feature mapping φS [Ke-
dem et al., 2012]. For the distance metric, we decompose
it as AS = PSP

T
S , and the columns {pSc}rc=1 of the ma-

trix PS are adopted as the fundamental elements. Then the
source knowledge fragment is given by fSc(·) = κS(pSc, ·),
where κS is a pre-defined kernel in the source domain. For
the feature mapping φS , the knowledge fragment is directly
obtained as fSc(·) = φSc(·), where φSc is the c’th coordinate
of φS .

Given the pre-trained source knowledge fragment
fSc(x

U
Sn), we propose to minimize the divergence between

φMc(x
U
Mn) and fSc(xUSn), where xUSn, xUMn are representa-

tions in the source and target domain respectively for a given
unlabeled sample. To this end, the regularization term in (3)
can be defined as follows,

R({φMc(·)}, {fSc(·)})

=
1

NU

NU∑
n=1

(
r∑
c=1

Div
(
φMc(x

U
Mn), fSc(x

U
Sn)
))

,
(4)

where r is the number of fundamental elements, and Div(·, ·)
is a divergence measure, which can be the absolute difference,
and least squares error.

In this paper, we adopt the absolute difference to suppress
the effect of outliers. This leads to the following compact
regularization term:

R(ΦM , FS) = |ΦM − FS |, (5)

where

ΦM =

 φM1(xUM1) · · · φM1(xUMNU )
...

. . .
...

φMr(x
U
M1) · · · φMr(x

U
MNU )



is the mapped matrix of the unlabeled data in the target do-
main, and FS is a knowledge fragment matrix represented by
the unlabeled data in the source domain, i.e.,

FS =

 fS1(xUS1) · · · fS1(xUSNU )
...

. . .
...

fSr(x
U
S1) · · · fSr(x

U
SNU )


with each fSc(x

U
Sn) = κS(pSc,x

U
Sn) or fSc(x

U
Sn) =

φSc(x
U
Sn). Here, |A| =

∑
i

∑
j |Aij | is the sum of all the

elements’ absolute values of a matrix A. By substituting (5)
into (3), we obtain the following specific optimization prob-
lem for HTDML:

arg min
φM

ε(φM )

=
1

NM

∑
i

g
(
yMi[1− ‖φM (x1

Mi)− φM (x2
Mi)‖22]

)
+ γ|ΦM − FS |.

(6)

In the following, we first assume φM = UM ∈ RdM×r is a
linear transformation, and then extend it to the nonlinear case.

2.2 Linear Formulation and Optimization
When we choose φM = UM as a linear transformation, the
problem (6) can be reformulated as

arg min
UM

ε(UM )

=
1

NM

∑
i

g
(
yMi[1− ‖UTM (x1

Mi − x2
Mi)‖22]

)
+ γ|UTMXU

M − FS |,
s.t. UM � 0,

(7)

where XU
M = [xUM1,x

U
M2, . . . ,x

U
MNU ] ∈ RdM×NU

is the
data matrix of the unlabeled samples in the target domain.
The constraint UM � 0 means that each element of UM is
non-negative. This constraint not only narrows the hypothesis
space for UM , but also makes the results easy to inspect and
interpret.

For notation simplicity, we set δMi = x1
Mi − x2

Mi, so that
‖UM (x1

Mi−x2
Mi)‖22 = δTMiUMU

T
MδMi, and the optimization

problem becomes

arg min
UM

ε(UM ) = E(UM ) + Ω(UM ), s.t. UM � 0, (8)

whereE(UM ) = 1
NM

∑NM

i=1 g(yMi[1−δTMiUMU
T
MδMi]) and

Ω(UM ) = γ|UTMXU
M − FS |. We propose to solve the prob-

lem (8) efficiently by utilizing the projected gradient method
(PGM) presented in [Lin, 2007]. Because the terms in both
E(UM ) and Ω(UM ) are non-differentiable, we first smooth
it according to [Nesterov, 2005]. Then the gradient of the
smoothed ε(UM ) is

∂εσ(UM )

∂UM
=

1

NM

NM∑
i=1

(
2yMiνMi(δMiδ

T
Mi)UM

)
+ γXU

MQ
T
M .

(9)
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where

νMi = median

{
−yMi(1− δTMiUMU

T
MδMi)

σ‖δMi‖∞
, 0, 1

}
. (10)

and QM ∈ Rr×NU

is a matrix with the entry qM,cn =

median
{

uT
Mcx

U
Mn−fS,cn

σ ,−1, 1
}

. Here, uMc is the c’th col-
umn of UM and fS,cn is the (c, n)’th element of FS ; σ is the
smooth parameter, which is set as 0.5 in this paper. Due to
limited page length, we omit the detailed derivation. Finally,
based on the obtained gradient, we apply the improved PG-
M presented in [Lin, 2007] to minimize the smoothed primal
εσ(UM ), i.e.,

U t+1
M = π[U tM − µt∇εσ(U tM )], (11)

where the operator π[x] projects all the negative entries of x
to zero, and µt is the step size that must satisfy the following
condition:

εσ(U t+1
M )− εσ(U tM ) ≤ ρ∇εσ(U tM )T (U t+1

M − U tM ), (12)

where the parameter ρ is chosen to be 0.01 following [Lin,
2007]. The step size can be determined using the Algo-
rithm 1 cited from [Lin, 2007] (Algorithm 4 therein), and
the convergence of the algorithm is guaranteed according
to [Lin, 2007]. The stopping criterion we utilized here is
|εσ(U t+1

M ) − εσ(U tM )|/|εσ(U t+1
M ) − εσ(U0

M )| < ε), where
the initialization U0

M is set as a random matrix.

2.3 Nonlinear Extension
When we allow the mapping φM to be nonlinear, the problem
(6) can be rewritten as

arg min
φM

ε(φM )

=
1

NM

NM∑
i=1

g
(
yMi[1− ‖φM (x1

Mi)− φM (x2
Mi)‖22]

)
+ γ

NU∑
n=1

|φM (xUMn)− fSn|,

(13)

where fSn is the n’th column of the matrix FS . To find an
appropriate nonlinear form for φM , we assume it is a gradient
boosting function given by φM = φ0M +α

∑T
t=1 ~Mt, where

φ0M is an initialization, and ~Mt is a regression tree, together
with a learning rate α [Kedem et al., 2012]. The solution
can be obtained by iteratively adding regression trees ~Mt to
minimize the objective ε(φM ) in a greedy way [Friedman,
2001].

In the following, we summarize the procedure of finding
the (approximately) optimal tree in each iteration. For nota-
tion simplicity, we omit the subscripts S and M . In iteration
t, the (approximately) optimal tree ~∗t is found by selecting a
tree from the set of all regression trees T p to approximate the
negative gradient of ε(φt−1) w.r.t. φt−1, which is the map-
ping learned at the previous iteration. Here, p is the depth of
the trees. Similar to the linear formulation, we smooth the
non-differentiable terms to calculate the gradients. Then the

tree ~∗t (·) is learned by approximating it with the negative
gradient negt(·) over each training sample, i.e.,

~∗t (·) = arg min
~∈T p

N∑
i=1

(~(xi)− negt(xi))2

+
NU∑
n=1

(
~(xUn )− negt(xUn )

)2
,

(14)

where negt(xi) = − ∂ε(φt−1)
∂φt−1(xi)

. The tree is greedily learned
by pGBRT [Tyree et al., 2011]. The problem (13) is non-
convex w.r.t. φM , so we initialize φM as φ0M = U∗M , which is
the optimal transformation learned by our linear formulation.
This makes the extension to be a nonlinear refinement of the
linear formulation.

The time complexity of the proposed algorithm for our lin-
ear formulation isO(T2T1rdM (NM +NU )), where T1 is the
number of checks that are needed to find the step size, and
T2 is the number of iterations for reaching the stop criterion.
Suppose the number of trees utilized in the pGBRT algorith-
m is Γ, then the time complexity for our nonlinear formu-
lation is O((T2T1r + Γlog(NB))dM (NM + NU )), where
NB � (NM + NU ). The complexity is independent on the
number samples NS and feature dimension dS in the source
domain, and linear w.r.t. all the number r, dM , NM and NU .
Thus, the proposed algorithm is quite efficient as long as NU

is not very large.

3 Experiments
In this section, we evaluate the effectiveness of the proposed
HTDML algorithm on both scene classification and objec-
t recognition. Prior to these evaluations, we present our ex-
perimental settings.

3.1 Experimental Setup
The comparison methods are listed as below:

• EU: directly computing the Euclidean distance between
the normalized representations of different samples in
the target domain.

• LMNN [Weinberger et al., 2005]: learning the distance
metric for the target domain using the large margin near-
est neighbor algorithm presented in [Weinberger et al.,
2005]. The number of attracted target neighbors is cho-
sen from 1 to 10.

• ITML [Davis et al., 2007]: learning the distance met-
ric for the target domain using the information-theoretic
metric learning algorithm presented in [Davis et al.,
2007]. The trade-off hyper-parameter is tuned over the
set {10i|i = −5,−4, . . . , 3, 4}.
• MTDA [Zhang and Yeung, 2011]: a heterogeneous

multi-task learning algorithm by extending linear dis-
criminant analysis to handle multiple heterogeneous do-
mains. The hyper-parameter of intermediate dimension-
ality is set as a fixed value since the model is not very
sensitive to it according to [Zhang and Yeung, 2011].
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• DAMA [Wang and Mahadevan, 2011]: a heteroge-
neous domain adaptation algorithm by aligning the man-
ifolds of different domains using the class labels. The
hyper-parameter is determined according to the strategy
presented in [Wang and Mahadevan, 2011].
• DT [Qi et al., 2012]: a heterogeneous distance func-

tion transfer algorithm by leveraging large amounts of
corresponding data between the source and target do-
main. The similarity of two target domain samples is
determined according to the similarities of their corre-
sponding source domain samples. The candidate sets for
the two balancing hyper-parameters are both {10i|i =
−5,−4, . . . , 4}.
• MI [Dai et al., 2015]: a recently proposed metric im-

itation algorithm. The knowledge transfer is performed
by manifold structure approximation between the source
and target domains. The hyper-parameters are deter-
mined according to [Dai et al., 2015].
• HTDML: the proposed heterogeneous transfer distance

metric learning algorithm. In the linear formulation,
LMNN [Weinberger et al., 2005] is adopted to find the
fundamental elements in the source domain. In the non-
linear extension, we employ GB-LMNN [Kedem et al.,
2012] to learn the source knowledge fragments. Be-
cause GBRT is adopted to learn the mapping in the target
domain, we call the proposed nonlinear extension GB-
HTDML. The hyper-parameter γ is optimized over the
set {10i|i = −5,−4, . . . , 3, 4}.

The single domain distance metric learning (DML) algo-
rithms (LMNN and ITML) only utilize the limited label or
side information in each domain, and do not make use of
any additional information from other domains. The het-
erogeneous transfer learning (HTL) approaches, MTDA and
DAMA, mainly utilize the label or side information in the
source and target domain to build a connection between them.
DAMA also leverage large amounts of unlabeled data to pre-
serve the topology in each domain. They do not aim to learn
distance metric, so we derive the metric as A = UUT after
learning the transformation matrix U ∈ Rd×r for the target
domain. DT and MI are also HTL methods, but they focus
on metric learning and perform knowledge transfer by uti-
lizing the unlabeled correspondence information between the
source and target domain. The chosen of an optimal dimen-
sionality r of the mapped subspace is still an open problem,
and we do not study it in this paper. To this end, for MTDA,
DAMA, and the proposed HTDML, we perform comparisons
on a set of varied r.

In all the following experiments, each feature space is re-
garded as a domain. The task in the target domain is to per-
form multi-class classification [Liu and Tao, 2016], where the
k-nearest neighbor classifier is adopted. Parameter determi-
nation is still an open issue in heterogenous transfer learning
due to the limited labeled samples in the target domain. Con-
sequently, if unspecified, the hyper-parameters are tuned in
the range mentioned above and the best results of different
compared methods are reported. Both the classification accu-
racy and macroF1 [Sokolova and Lapalme, 2009] score are
utilized as evaluation criteria. The side information in terms
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Figure 1: Classification accuracies and macroF1 scores of the non-
linear methods vs. dimensionality of the mapped subspace on the
Scene-15 dataset.

of pairwise similarity constraints are obtained according to
whether two labeled training samples belong to the same class
or not. The remained training data that have representation-
s in both domains are used as unlabeled data. Ten random
choices of the labeled instances or sample pairs are used, and
the mean values with standard deviations are reported.

3.2 Scene Categorization
The dataset used in scene categorization is the Scene-15
[Lazebnik et al., 2006], which contains 4585 images belong-
ing to 15 natural scene categories. We randomly split the im-
age set into a training and test set of equal size. We choose
the “expensive” CNN feature [Chatfield et al., 2014] as the
source domain, and the “cheap” GIST feature [Oliva and Tor-
ralba, 2001] as the target domain. The used features are pro-
vided by [Dai et al., 2015], where the feature dimensions of
CNN and GIST are 4096 and 20 respectively. We select 10 la-
beled instances for each category in both the source and target
domain to see how much the “expensive” feature can help the
metric learning of “cheap” feature [Dai et al., 2015]. In the
following, we first select 2000 unlabeled cross-domain corre-
spondences, and then investigate the performance of varying
number of correspondences.

For all the compared methods except the proposed GB-
HTDML, we preprocess the features by kernel PCA (KPCA)
to take the nonlinear structure of the data distribution into
consideration. In the proposed linear HTDML with the KP-
CA preprocess, we adopt the linear kernel (for the prepro-
cessed data) in the source domain. The result dimensions are
2000 and 20 for CNN and GIST respectively. We also com-
pared the different methods without the KPCA preprocess,
and found that the performance of all methods are worse than
that of using the preprocess. This indicates that the distribu-
tion structures of the utilized visual features are indeed non-
linear, and KPCA is able to exploit such nonlinearity to some
extent. We do not show the results without preprocess here
due to the limited page length.

The classification results of using the preprocess are shown
in Fig. 1. We can see from the results that: 1) the HTL
approach DAMA is slightly better than the single domain
DML algorithms. This is because KPCA helps to build the
domain connection by exploiting the nonlinearity, and some
source information is transferred to help learn the transforma-
tion in the target domain; 2) DT and MI, as well as MTDA
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Figure 2: Classification accuracies and macroF1 scores vs. number
of unlabeled correspondences on the Scene-15 dataset.

are only comparable to LMNN and ITML. The performance
of the proposed HTDML with the KPCA preprocess is on-
ly a bit higher than LMNN. This indicates that such a sim-
ple preprocess can only bring limited benefits to the transfer
approaches, and is not always helpful; 3) the proposed GB-
HTDML outperforms all other approaches significantly. This
demonstrates that the nonlinearity in the data is successfully
captured by the developed nonlinear algorithm. In particu-
lar, we obtain significant 11.8% and 12.3% relative improve-
ments over the competitive DAMA in terms of accuracy and
macroF1 respectively.

All DT, MI and the proposed HTDML make use of the un-
labeled corresponding data between the source and target do-
main. In this set of experiments, we investigate how the num-
ber of correspondences affect their performance. We vary the
number from 500 to 2000, and the results are shown in Fig.
2. It can be seen from the results that: 1) for DT and MI,
there are only small improvements when the number of cor-
respondences increases. Performance of DT and MI reach
their peaks around 1500 and 1000 respectively. Whereas for
the proposed GB-HTDML, the performance improves signif-
icantly with an increasing number of correspondences. This
demonstrates that the KPCA preprocess cannot effectively
capture nonlinearity of the data distribution, which is prop-
erly discovered by our GB-HTDML; 2) the improvements of
GB-HTDML decrease when the amounts of corresponding
data are more than 1500. This is because there is redundan-
cy in the set of knowledge fragments, and the amount of new
knowledge brought by including more correspondences be-
comes small when the size of the set is large enough.

3.3 Object Recognition
We further verify the proposed method in object recognition
on a natural image dataset NUS-WIDE (NUS) [Chua et al.,
2009]. The dataset contains 269, 648 images, and we con-
duct experiments on a subset that consists of 16, 519 images
belonging to 12 animal concepts. Half of the images are used
for training and the rest for test. In this dataset, we choose the
1000-D tag feature as source domain, and the 500-D bag of
SIFT [Lowe, 2004] visual words (BOVW) as the target do-
main. The number of labeled instances for each concept is
6 in both domains to see how much the easily interpretable
text feature can guide the metric learning of visual feature,
which is often harder to interpret [Qi et al., 2012]. The num-
ber of unlabeled correspondences is 5000. Original features
are used in the proposed GB-HTDML. For other methods,
the dimensions of the tag and BOVW representations after
the KPCA preprocess are both 300.
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Figure 3: Classification accuracies and macroF1 scores vs. dimen-
sionality of the mapped subspace on the NUS animal subset.

This set of experiments is more challenging than the scene
categorization since there is semantic gap between the text
and visual features [Qi et al., 2012]. From the results shown
in Fig. 3, we can see that: 1) the improvements of the sin-
gle domain DML algorithms and DT over the EU baseline
are not that large as in scene categorization. This indicates
that the effectiveness of the KPCA preprocess drops in this
application; 2) MI is superior to them and this may benefit
from the manifold structure exploited in the source domain;
3) DAMA fail on this dataset because of the semantic gap.
MTDA outperforms DAMA since the former learns an addi-
tional hidden layer. The transfer is conducted between higher
level patterns and thus the semantic gap is reduced; 4) the
proposed GB-HTDML outperforms all other approaches sig-
nificantly when the dimensionality of the mapped subspace
is more than 10. This further verifies the superiority of the
proposed method.

4 Conclusion
In this paper, we present a general heterogeneous transfer dis-
tance metric learning framework. The framework extracts a
set of knowledge fragments from the source domain to help
the metric learning in the target domain. Any existing dis-
tance metric learning (DML) algorithms can be adopted to
learn the source knowledge fragments in an offline manner,
and either linear or nonlinear metric can be learned for the
target domain. Hence the proposed framework is general,
flexible, and easy-to-use.

From the experimental evaluation on two popular applica-
tions, we mainly conclude that: 1) the performance of most of
the current heterogeneous transfer learning (HTL) or metric
transfer (imitation) approaches are unsatisfactory in the ap-
plications where data lie in a highly nonlinear feature space,
or there is a semantic gap between the source and target do-
main. The KPCA preprocess can sometimes be helpful, but
not always take effect; 2) by appropriately exploring the non-
linearity in both the source and target domains, we can obtain
significant improvements over the KPCA counterpart.
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